Effects of spatial aggregation of soil spatial information on watershed hydrological modelling
نویسندگان
چکیده
Many researchers have examined the impact of detailed soil spatial information on hydrological modelling due to the fact that such information serves as important input to hydrological modelling, yet is difficult and expensive to obtain. Most research has focused on the effects at single scales; however, the effects in the context of spatial aggregation across different scales are largely missing. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information: the 10-m-resolution soil data derived from the Soil-Land Inference Model (SoLIM) and the 1 : 24000 scale Soil Survey Geographic (SSURGO) database in the United States. The study was conducted at three different spatial scales: two at different watershed size levels (referred to as full watershed and sub-basin, respectively) and one at the model minimum simulation unit level. A fully distributed hydrologic model (WetSpa) and a semi-distributed model (SWAT) were used to assess the effects. The results show that at the minimum simulation unit level the differences in simulated runoff are large, but the differences gradually decrease as the spatial scale of the simulation units increases. For sub-basins larger than 10 km2 in the study area, stream flows simulated by spatially detailed SoLIM soil data do not significantly vary from those by SSURGO. The effects of spatial scale are shown to correlate with aggregation effect of the watershed routing process. The unique findings of this paper provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of soil data affects watershed modelling. Different views result from different scales at which those studies were conducted. In addition, the findings offer a potentially useful basis for selecting details of soil spatial information appropriate for watershed modelling at a given scale. Copyright 2011 John Wiley & Sons, Ltd.
منابع مشابه
Effects of Digital Elevation Models (DEM) Spatial Resolution on Hydrological Simulation
Digital Elevation Model is one of the most important data for watershed modeling whit hydrological models that it has a significant impact on hydrological processes simulation. Several studies by the Soil and Water Assessment Tool (SWAT) as useful Tool have indicated that the simulation results of this model is very sensitive to the quality of topographic data. The aim of this study is evaluati...
متن کاملModelling forest fires hydrological impact using spatio - temporal geographical data
In recent years, forest fires frequency and intensity has increased, causing a new awareness about their impact not only on vegetation, but also on hydrological regime. Changes in vegetation influence the processes of interception and evapotranspiration, seriously affecting the hydrological cycle. Forest fires can also affect hydrological processes indirectly, altering the hydraulic properties ...
متن کاملSimulation of Water Balance Components Using a Distributed Hydrological Model in Taleghan Watershed
Water changes information in the hydrological system, in time and space, as an environmental issue takes heed of managers and decision makers in watershed management and river engineering, which can be addressed by using spatially distributed modeling. In this study simulation of water balance components in Taleghan mountainous watershed is performed using the spatially distributed hydrological...
متن کاملAssessment of the important Factors on Gully Erosion in Arid and Semi-arid Region in Ilam Province
Infiltration is the process of water penetration from the ground surface into the soil and is an important process in the hydrological cycle by which surface runoff and groundwater recharge can be linked. Over the years, the importance of the infiltration process resulted in the development of several simplified analytical models for predicting infiltration. These infiltration models range from...
متن کاملIdentification of the Best Infiltration Model in Order to Investigation of Spatial Variability of Infiltration Parameters (Case Study: Darabkola River Basin)
Infiltration is the process of water penetration from the ground surface into the soil and is an important process in the hydrological cycle by which surface runoff and groundwater recharge can be linked. Over the years, the importance of the infiltration process resulted in the development of several simplified analytical models for predicting infiltration. These infiltration models range from...
متن کامل